Masters Degrees May Suggest Maturity of a Tech Ecosystem

The count of Masters degrees with program titles related to Data Science and Analytics may suggest the maturity of a tech ecosystem…and where large tech companies are more likely to invest.

In compiling a list of post-secondary programs across Canada, we see that both (the provinces of) BC and Ontario have several Masters’ level programs that reference “Data”, “Data Science”, or “Analytics”.   By comparison, Alberta currently has no Masters level programs identified as such.

Interestingly, Toronto, Ontario has made it on the shortlist of Amazon’s bid competition for its second head office in North America.  And Vancouver, BC just announced that Amazon will generate 3,000 new jobs in that city related to e-commerce, cloud and machine learning.

These profiles below help compare the 3 provinces.  They are derived from a data dashboard on the subject. Feel free to take a look and explore for yourself.

Pertaining to Data Science and Analytics Programs in Canada – April 2018:

Alberta:   0 Masters Programs

British Columbia (BC):   4 Masters Programs

Ontario:   8 Masters Programs

When you interact with the dashboard, it looks like this:

If Time is Money, You Get What You Pay For

If time is money, especially with respect to people’s time, you get what you pay for.

In this clever video, the scope & quality of the output decreases as time decreases.

We often want something resembling the far left image, but often get something less than that; tight budgets, short schedules, and poor planning can contribute.

But sometimes just the bare bones sketch is all that’s needed.  It just depends on the objective of who’s paying.

The key lesson is to understand the relationships among time, resources and scope and manage expectations accordingly.



For those in Calgary…Join us on Thursdays for 1hr, interactive seminars

Join us and learn more about the fascinating world of Data Analytics, Business Intelligence and Being Digital.  We’ll explore concepts using real-life examples and have interactive discussions.

A new topic each session may include data-driven decision-making, interactive dashboards, Microsoft Power BI, using the cloud, busting silos with data, data management challenges, BI architecture etc.

Hosted by Roger Milley, Chris Semanciw and Kendra Stone of Fuzeium

Audience: For those who are genuinely curious about data and the digital world.

No technical requirements, but you are welcome to bring your laptop and click along with demos.

Following the presentation, join us for ResourceYYC’s “Beers with Peers”, a networking event held in our co-working space.

Busting Silos With Data Analytics Platforms and Data Science

Ideas expressed in this blog were inspired by Gillian Tett’s* book, The Silo Effect: The Peril of Expertise and the Promise of Breaking Down Barriers. Learnings were added from launching a data analytics firm in the middle of an economic downturn.

Quick Points:

  • silos create barriers in organizations, sectors, and industries
  • silos interfere with organizational effectiveness
  • silos can be interpreted as narrow, specialist groups*
  • silos can also be comprised of systems and data
  • silos exist in all forms of organizations (profit, non-profit, gov. etc)
  • experts contribute to creating and reinforcing silos
  • experts can become vulnerable to job loss in economic downturns
  • digital data is double-edged, as it both creates and breaks down, silos
  • data analytics platforms can bridge the gaps across silos
  • applied data science is an interdisciplinary field that can bridge silos

Source: iStockphoto
Source: iStockphoto

Silos emerge naturally in all cultures and social settings. The main reason is that we as humans need to classify and group everything around us, but we are not wired to do it the same way. * So we come up with our own interpretation of the world, our work, and our personal lives. Unique interpretations create barriers.

And when we organize people to get things done, like in business, we’re inclined to create functional silos (such as finance, marketing, operations, IT etc.) because it’s efficient to do so. Functions are areas of specialty and are sometimes necessary because of regulation (e.g. professional designations for engineering, law, accounting). But they can be loosely formed too and have no designations per se; as in the case of individuals or teams that simply hoard data for their own benefit.

Whether they emerge organically or by design, the more specialized the silos, the more rigid they become We see this in functions and disciplines that require deep expertise that takes years to accumulate.  The silos lead to barriers when their concepts, jargon, and beliefs become inaccessible to other groups.

The proliferation of silos leads to difficulties among groups trying to work together.   People may not understand each others’ roles or ideas; processes may break; opportunities may not be realized.   This is problematic in a variety of situations where coordination is essential such as disaster response; product development & launch; construction; healthcare; customer relationship management; energy development etc.  Tett* has numerous interesting examples of silos and overcoming their limitations.

Specialists within silos are vulnerable to job loss when the demand for their skills weakens.   A good example of this is in the Canadian oil and gas sector.  As the economic conditions drop, there is less demand for the associated experts.   This chart shows the dip in Alberta-based energy & resource-related jobs as those sectors declined during 2 recessions.   There are numerous accounts of how tradespeople and professionals alike lost jobs and have had difficulty transitioning to other sectors.

Alberta, Canada Job Loss In Two Sectors – Indicated by Blue Arrows
(see reference at bottom of blog **)

Silos are not limited to technical sectors.  The vast array of digital data in all aspects of society propagates silos.   Data amplifies who we are as it contains the language and the values that we use to describe the world around us.  Imagine your own computer files (pictures, social media, email, documents, spreadsheets etc.) and how they are organized across multiple devices (computer, phone etc.)–are you in control of all that data?  Do you know where to find what you need when you need it?   Now imagine what it’s like across a team, an organization, a sector, an industry, a jurisdiction etc.

When organizational and data silos grow unabated, they tend to control us through unnecessary complexity.  But there are ways to reduce the negative impact and create value.  Drawing on Tett’s advice*, here are a number of suggestions:

  • first and foremost, acknowledge that silos exist and emerge naturally
  • counter silo-thinking by actively learning beyond your area
  • make organizations more fluid (such as rotating staff to different areas)
  • create situations for social collisions such as conferences, co-working spaces
  • incentivize sharing of information beyond silos
  • encourage a culture of interpreting information
  • develop some “cultural translators” who are adept at moving across silos
  • use computers and data to break down barriers

On the subject of using computers and data, there are at least two key areas to address: Data Analytics Platforms and Data Science (both of which are interpreted broadly in this article).

The use of a Data Analytics Platforms enables data to be integrated from different sources and to be simplified and analyzed–in short, this type of platform helps translate data into information/insight–regardless of the silos from which it came.  This idea is not new, but it’s getting easier of late with advancements in cloud, self-serve data analytics, flexible databases, big data technologies, availability of data etc.  Those familiar with business intelligence (BI) understand how traditional approaches have been giving way to new capabilities.


Applied Data Science is interpreted as a broad, interdisciplinary field*** that seeks to derive meaning and understanding from digital data.  Some of the competencies you might see at play are identified below.  Often teams are needed to bring these skills to bear, as it is too difficult to have individuals with such breadth.   In this model, the Functional Knowledge pertains to any area being analyzed (e.g. finance, marketing, manufacturing, operations).   And the Narrative is the story that pulls it all together, offering an explanation of what the data are saying.

The promise of data analytics platforms and the application of data science is linked their ability to answer questions.  To do this responsibly, of course, ethics, policy and the law are essential boundaries for the work.  Solving problems and finding opportunities won’t happen by accident; one has to be purposeful and careful to do it right.

As Tett* says, “Data does not reorganize itself, or break down silos by itself; somebody needs to program the computers. What is needed above all is a big dose of human imagination.”*  

Applied Data Science is a field that we can look to for those skills.  And the interdisciplinary nature of data science may offer new opportunities for specialists (such as engineers, geoscientists, lawyers, accountants etc.) who are dislodged during economic downturns.



Tett, G. (2015) The Silo Effect: The Peril of Expertise and the Promise of Breaking Down Barriers

** Fletcher, R (2018) Jobs and wages: The winners and losers through 2 Alberta recessions

*** The use of Applied Data Science is similar but a bit broader than the definition offered here Data Science Definition.  “Applied” is used to suggest the practical aspects of what one might see in the workplace.

Proto-typing a Data Dashboard with Microsoft Power BI: Varsity Soccer Example

We demonstrate below how one can proto-type some statistical analysis in the form of an interactive dashboard.   In doing so, multiple sources of public data can be simplified, visualized and made more insightful.  Using two off-the-shelf products from Microsoft, Excel 2016 and Power BI, we scraped data from nearly 20 public web pages on two sites and produced an interactive display.

Using Excel 2016 (and its Query Editor) we were able to extract data from tables on Web pages and create a data workflow to improve it for analysis.    The aggregated data was then modeled into several tables within Power BI.  The Report building feature of Power BI was then used to create visuals and enable interactivity.

The resulting interactive dashboard for the 2017 Canadian U Sport Soccer Championship is embedded below.


Canadian U Sport is the governing body for Canadian university sports.  Their national soccer championship in Nov 2017 awarded Gold to the Cape Breton University Men’s team and Gold to the Université de Montréal Women’s team.


  • Of the 6 medals awarded in the finals (Gold, Silver, Bronze for both Men and Women), 4 of the medals went to teams from relatively small schools.
  • Two universities garnered two medals each.
  • All of the medal winners (with the exception of one team) had strong records in their respective divisions going back 8 years.

Where would you find that information, and which other schools competed and received medals? 

According to U Sport, there are 56 universities in Canada with about 12,000 student-athletes competing in various sports.   U Sport has its own site for publishing statistics, but there are numerous other ones too, often reflecting the geographic divisions across the country.  And then the universities have their own sites to promote their teams, their results and to build esprit de corps on campus.

  • You can see the soccer medal summary for both men or women.
  • You can see the size of their respective schools.
  • You can see the historical goal differential by selecting each team.
    Note:  Use the bi-directional arrow in the bottom right of the dashboard to make it full screen.

Fuzeium’s dashboard platform and expertise are largely based on Microsoft’s Power BI and Microsoft Azure Cloud. The capabilities are applicable to any industry.  Please contact us if you like more information.

3 Case Studies to Illustrate Business Intelligence and more…

We are pleased to add Calgary census data as one of three case studies on our site.   The two other cases include Alberta Geothermal Potential and Alberta Inactive and Orphan Wells.

You can access all three case studies from the home page.

These cases illustrate how we tackle key questions and generate insights through data dashboards.

They also serve as examples of business intelligence, data analytics, and visualization, while leveraging the Microsoft Power BI and Microsoft Azure platforms.

Data Dashboard: Calgary’s Population and How it is Distributed by Community

Calgary, Alberta, Canada - Photo credit: Kevin Cappis

Whether you are new to Calgary, or a long-time resident, you may be interested in knowing how the city’s population changed over time.  And how the population is distributed among the communities.

The following analysis was derived from Fuzeium’s interactive dashboards, which analyze Calgary’s 2017 civic census data.

Feel free to interact directly with the
Calgary census Fuzeium dashboards.

Calgary’s population has grown every year since 1995.  Although in 2010 and in 2016, that growth declined due to a net migration out of the city. In total, the population has increased by 89,000 people in the past 5 years.

Calgary is a young city with a median age  (i.e the middle age) of 36.4 years (according to Calgary Economic Development).  The age category of 25-44 years old, is the largest group, with over 440,000 people.  The two communities with the highest number of those individuals are The Beltline and Panorama Hills.

As Calgary continued to grow, we see the biggest increase in population changes in the outer communities, which are newer subdivisions.

The green areas on the map below illustrate which communities had an increase in population (dark green with the highest), whereas the pink-red indicates communities that declined in population.

The five communities with the largest growth over 5 years, grew in total by more than 32,000 people.  Not surprisingly, these are on the edges of the city in the north and the south.

They are pinpointed on the map below.

*All information is provided subject to our Terms of Use, including disclaimer of warranties and limitations on liability. © Fuzeium Innovations Inc. To provide feedback, contact us at